Methylglyoxal is an antibacterial effector produced by macrophages during infection.

甲基乙二醛是巨噬细胞在感染过程中产生的一种抗菌效应物质

阅读:11
作者:Anaya-Sanchez Andrea, Berry Samuel B, Espich Scott, Zilinskas Alex, Tran Phuong M, Agudelo Carolina, Samani Helia, Darwin K Heran, Portnoy Daniel A, Stanley Sarah A
Infected macrophages transition into aerobic glycolysis, a metabolic program crucial for controlling bacterial infection. However, antimicrobial mechanisms supported by aerobic glycolysis are unclear. Methylglyoxal is a highly toxic aldehyde that modifies proteins and DNA and is produced as a side product of glycolysis. We show that despite this toxicity, infected macrophages generate high levels of methylglyoxal during aerobic glycolysis while downregulating the detoxification system, including glyoxalase 1 (GLO1). Dampening methylglyoxal generation in mice resulted in enhanced survival of Listeria monocytogenes and Mycobacterium tuberculosis, whereas mice lacking Glo1 have increased methylglyoxal levels and improved infection control. Furthermore, bacteria unable to detoxify methylglyoxal (ΔgloA) exhibit attenuated virulence but are partially rescued in mice that cannot enter glycolysis and generate methylglyoxal. This loss of bacterial GloA results in up to a 1,000-fold greater genomic mutation frequency during infection. Collectively, these results suggest that methylglyoxal is an antimicrobial innate effector that defends against bacterial pathogens.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。