Temporal Clonal Tracing and Functional Perturbation Reveal Niche-Adaptive and Tumor-Intrinsic IFNγ Dependencies Driving Ovarian Cancer Metastasis.

时间克隆追踪和功能扰动揭示了驱动卵巢癌转移的微环境适应性和肿瘤内在的 IFNγ 依赖性

阅读:6
作者:Aleksandrovic Emilija, Fross Shaneann R, Golomb Samantha M, Liu Xiyu, Zhao Zhuo, Das Nikitha M, Reese Tanner C, Ma Wei, Lopez Jacqueline, Stack M Sharon, Zhao Min, Zhang Siyuan
Metastasis is an emergent continuum, driven by evolving reciprocal adaptations between continuously disseminating tumor cells (DTCs) and the specialized metastatic niches of distant organs. The interplay between intrinsic and niche-driven mechanisms that enables DTCs to survive and home to distant organs remains incompletely understood. Here, using MetTag, a single-cell barcoding and transcriptome profiling approach with time-stamped batch identifiers (BC.IDs), we mapped temporal, clonal dynamics of DTCs and the immune cell landscape across ovarian cancer metastatic niches. Deep sequencing of barcodes revealed preferred enrichment of early-disseminated clones across metastatic niches. Mechanistically, single-cell RNA sequencing (scRNA-seq) coupled with velocity analyses in ascites and metastasis-bearing omenta uncovered an emergent, distinct interferon-gamma (IFNγ) centric transcriptional trajectory, enriched among early seeding clones. Moreover, in vivo CRISPR/Cas9 screening of metastatic niche-specific signatures demonstrated that genes belonging to the ascites IFNγ signature, including Marco, Gbp2b, and Slfn1, are functionally important for peritoneal metastasis. Knockout of IFNγ receptor 1 (Ifngr1) in tumor cells significantly reduced metastatic burden and extended survival, underscoring the importance of tumor cell intrinsic IFNγ signaling in ovarian cancer metastasis. Furthermore, we identified that the tumor intrinsic IFNγ response and ascites-derived tumor-associated macrophages (TAMs) protect cancer cells from anoikis-mediated death within the IFNγ-rich ascites environment. Our study resolves temporal dynamics of disseminating tumor cells and highlights an ascites-driven, IFNγ program as a necessary pro-metastatic adaptation in the ovarian metastasis cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。