IRE1α-mediated endoplasmic reticulum stress response regulates oxidative damage in CYP4V2 deficient human retinal pigment epithelial cells.

IRE1α介导的内质网应激反应调节CYP4V2缺陷的人类视网膜色素上皮细胞的氧化损伤

阅读:6
作者:Hsiao Yu-Ting, Hsiao Chang-Chun, Lee Jong-Jer
BACKGROUND: Given the role of polyunsaturated fatty acid (PUFA) overload and mitochondrial dysfunction in retinal pigment epithelium (RPE) cells in causing retinal degeneration in Bietti crystalline dystrophy (BCD), we aimed to identify the pathways responsible for intracellular oxidative stress and mitochondrial damage in CYP4V2-deficient RPE cells. MATERIALS AND METHODS: Proteomic analysis of control and CYP4V2-knockdown (KD) ARPE-19 cells revealed that endoplasmic reticulum (ER) stress was the most enriched pathway. The effects of CYP4V2 deficiency on intracellular reactive oxygen species, mitochondrial integrity, and ATP production were assessed. RESULTS: Inositol-requiring enzyme 1 α (IRE1α) inhibitors suppressed upregulation of endoplasmic reticulum oxidoreductase 1 alpha (ERO1-Lα) protein expression, which contributed to ER-associated oxidative stress. Loss of mitochondrial transmembrane potential and reduced ATP production were mitigated with IRE1α inhibitor in CYP4V2-KD ARPE-19 cells. CONCLUSIONS: Our findings reveal a novel regulatory mechanism involving potential reduction in PUFA utilization, IRE1α signaling mediated ER oxidative stress, and mitochondrial dysfunction in BCD, potentially offering future therapeutic avenues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。