A First-in-Class High-Throughput Screen to Discover Modulators of the Alternative Lengthening of Telomeres (ALT) Pathway.

首创高通量筛选方法,用于发现端粒替代延长(ALT)途径的调节剂

阅读:5
作者:Froney Merrill M, Cook Christian R, Cadiz Alyssa M, Flinter Katherine A, Ledeboer Sara T, Chan Bianca, Burris Lauren E, Hardy Brian P, Pearce Kenneth H, Wardell Alexis C, Golitz Brian T, Jarstfer Michael B, Pattenden Samantha G
Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。