Inhibition of ABCG2 by SCO-101 Enhances Chemotherapy Efficacy in Cancer.

SCO-101通过抑制ABCG2增强癌症化疗疗效

阅读:5
作者:Pfeiffer Anamarija, Di Leo Luca, Bechmann Marc Baker, Nawabi Mubeen, Ambjørner Sophie, Ardeshir-Larijani Diba, Colstrup Louise Thybo, Borchert Signe Vedel, Saaby Lasse, Brodin Birger, Gajhede Michael, Lund Xamuel Loft, Čečková Martina, Brünner Nils, Stenvang Jan
Chemotherapy resistance, particularly multidrug resistance (MDR), remains a significant barrier to effective cancer treatment, leading to high mortality rates. The development of novel therapeutic strategies targeting key molecular mechanisms to counteract drug resistance is thus an urgent clinical need. In this study, we evaluated the potential of the small molecule SCO-101 to restore chemotherapy sensitivity in drug-resistant cancer cells. Using in silico and in vitro models such as molecular docking, cell viability, colony formation, dye efflux, transporter assays and chemotherapy retention, we assessed the impact of SCO-101 on drug retention and response in several drug-resistant cancer cells. SCO-101 was found to inhibit the activity of breast cancer resistance protein (BCRP/ABCG2) and UDP Glucuronosyltransferase Family 1 Member A1 (UGT1A1), two key proteins involved in drug resistance by cellular drug excretion and drug metabolism. Our results demonstrate that inhibition of these proteins by SCO-101 leads to increased intracellular drug accumulation, enhancing the cytotoxic effects of chemotherapy agents. Additionally, we identified a strong correlation between high ABCG2 expression and MDR in non-drug-resistant models, where cells exhibiting elevated ABCG2 levels displayed chemotherapy resistance, which was effectively reversed by SCO-101 co-treatment. These findings highlight the therapeutic potential of SCO-101 in overcoming MDR by inhibiting drug efflux mechanisms and metabolism, thereby enhancing chemotherapy efficacy. SCO-101 is currently undergoing clinical trials as an orally administered drug and is considered a promising strategy for improving cancer treatment outcomes in patients with drug-resistant tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。