Pancreatic cancer treatment often relies on multi-drug regimens, but optimal combinations remain elusive. This study evaluates predictive approaches to identify synergistic drug combinations using a dataset from the National Center for Advancing Translational Sciences (NCATS). Screening 496 combinations of 32 anticancer compounds against the PANC-1 cells experimentally determined the degree of synergism and antagonism. Three research groups (NCATS, University of North Carolina, and Massachusetts Institute of Technology) leverage these data to apply machine learning (ML) approaches, predicting synergy across 1.6 million combinations. Of the 88 tested, 51 show synergy, with graph convolutional networks achieving the best hit rate and random forest the highest precision. Beyond highlighting the potential of ML, this work delivers 307 experimentally validated synergistic combinations, demonstrating its practical impact in treating pancreatic cancer.
AI-driven discovery of synergistic drug combinations against pancreatic cancer.
利用人工智能发现对抗胰腺癌的协同药物组合
阅读:5
作者:Pourmousa Mohsen, Jain Sankalp, Barnaeva Elena, Jin Wengong, Hochuli Joshua, Itkin Zina, Maxfield Travis, Melo-Filho Cleber, Thieme Andrew, Wilson Kelli, Klumpp-Thomas Carleen, Michael Sam, Southall Noel, Jaakkola Tommi, Muratov Eugene N, Barzilay Regina, Tropsha Alexander, Ferrer Marc, Zakharov Alexey V
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 29; 16(1):4020 |
| doi: | 10.1038/s41467-025-56818-6 | 研究方向: | 人工智能 |
| 疾病类型: | 胰腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
