Characteristics and Potential of KSL, KSL-W, and Dadapin-1 Antimicrobial Peptides for Preventing Infections of Orthopedic Prosthetic Devices: Identifying the Most Robust Candidate.

KSL、KSL-W 和 Dadapin-1 抗菌肽的特性和潜力在预防骨科假体装置感染方面的应用:确定最有效的候选药物

阅读:6
作者:Campoccia Davide, De Donno Andrea, Bottau Giulia, Bua Gloria, Ravaioli Stefano, Capponi Eleonora, Sotgiu Giovanna, Pegreffi Francesco, Costantini Silvia, Arciola Carla Renata
Antimicrobial peptides (AMPs) are increasingly emerging as alternatives to conventional antibiotics. This study compared the antibacterial activity of two decapeptides, KSL and KSL-W, and a 23-residue peptide, Dadapin-1, against bacterial species that colonize orthopedic implants, with the aim of identifying the most effective peptide for future AMP-based anti-infective orthopedic biomaterials. Staphylococcus aureus ATCC 25923 was the reference strain. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm inhibitory concentration (MBIC) of the AMPs were determined in both undiluted and diluted Mueller-Hinton Broth II (MHB II) to gain a simplified perspective on the potential interference of bioenvironments. The MBICs of the AMPs were close to their MICs. In diluted broth, a concentration of 3.91 μg/mL of KSL or KSL-W was bactericidal against staphylococci and prevented biofilm formation. An eight-fold higher concentration of Dadapin-1 was required to achieve bactericidal activity. Undiluted MHB II significantly hindered the antibacterial activity of KSL and Dadapin-1, while KSL-W was notably less affected. The values of LoA, a newly developed indicator of loss of activity, confirmed these findings. Bacterial species and strain influenced LoA. Furthermore, KSL-W exhibited a protective effect on osteoblasts co-cultured with S. aureus ATCC 25923. Overall, KSL-W emerged as the most promising candidate for AMP-based anti-infective orthopedic biomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。