A novel indirubin- 3-monoxime derivative I3MV- 8b exhibits remarkable cytotoxicity against multiple myeloma by targeting TRIM28.

一种新型的靛玉红-3-单肟衍生物I3MV-8b通过靶向TRIM28对多发性骨髓瘤表现出显著的细胞毒性

阅读:6
作者:Fang Teng, Liu Lanting, Sun Hao, Zhang Xiaoyu, Sun Xiyue, Yu Zhen, Gong Lixin, Xie Shiyi, Zhao Yonglong, Li Yan, Qiu Lugui, An Gang, He Bin, Hao Mu
INTRODUCTION: Maintaining protein homeostasis is vital for multiple myeloma (MM) cell survival. Indirubin- 3-monoxime (I3MO), a potential MM therapeutic, inhibits proteasome activity, while histone deacetylase 6 (HDAC6) regulates autophagy. We developed I3MV- 8b, an I3MO derivative, integrating an HDAC6 inhibitor moiety to enhance dual inhibition of proteasome and autophagy pathways. METHODS: The anti-MM effects of I3MV- 8b were tested in vitro and in vivo. To identify downstream targets, RNA-seq and dual-luciferase reporter assays were performed. Additionally, ChIP-seq and IP-MS techniques were employed to elucidate the underlying molecular mechanism. RESULTS: I3MV- 8b significantly suppressed MM cell proliferation and induced apoptosis. Combined with proteasome inhibitors, I3MV- 8b enhanced cytotoxicity by concurrently inhibiting proteasome and autophagy pathways. It reduced TRIM28 transcription, correlating with lower expression of proteasome subunits and autophagy-related genes. ChIP-seq revealed that TRIM28 binds to proteasome gene promoters, and its knockdown decreased proteasome subunit expression and activity. TRIM28 knockdown also impaired autophagosome formation. IP-MS and Co-IP assays showed TRIM28 interacted with 14-3 - 3ζ, a negative regulator of autophagy, promoting its ubiquitination and degradation. This interaction reduced autophagy regulation, further sensitizing cells to treatment. CONCLUSIONS: I3MV- 8b offers a novel dual inhibition strategy targeting proteasome and autophagy, presenting a promising therapeutic option for MM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。