Micro-proteomics reveals distinct protein profiles and SPARC/FGF2/CDH1 regulation of human Sertoli cells between Sertoli cell-only syndrome and normal men.

微蛋白质组学揭示了仅有塞托利细胞综合征患者和正常男性塞托利细胞中不同的蛋白质谱和 SPARC/FGF2/CDH1 调控

阅读:4
作者:Du Li, Cui Yinghong, Chen Wei, Li Chunyun, He Zuping
Sertoli cell-only syndrome (SCOS) is one of the most severe non-obstructive azoospermia (NOA) types, since only Sertoli cells with not any male germ cells exist with the seminiferous tubules. As such, it is of particular significance to elucidate molecular mechanisms underlying SCOS for improving the diagnosis and treatment strategies for this disease. Due to the difficulties in obtaining sufficient human testicular tissues and the limited availability of human cells, the traditional proteomics is inadequate for comparing the differences in large scale of protein expression patterns of human Sertoli cells between SCOS and normal men. To solve this issue on the requirement of large amount of cell numbers, we employed micro-proteomics to reveal distinct global protein expression profiles of human Sertoli cells between SCOS and obstructive azoospermia (OA) with normal spermatogenesis utilizing single human Sertoli cells. We found a significant downregulation of proteins involved in cell adhesion pathways in SCOS Sertoli cells, whereas proteins related to apoptosis were markedly upregulated. Interestingly, we identified the lower expression of SPARC (secreted protein acidic and rich in cysteine) and the higher expression of FGF2 (fibroblast growth factor 2) in human Sertoli cells of the SCOS compared to normal men. SPARC silencing led to upregulation of FGF2 in human Sertoli cells, and SPARC may be associated with the occurrence of SCOS and serves as a reliable marker for the diagnosis of this disease. This study thus comprehensively offers the proteomic landscape of human Sertoli cells in the testes of SCOS patients and it sheds a novel insight into the pathogenesis of SCOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。