The reaction mechanism for glycolysis side product degradation by Parkinson's disease-linked DJ-1.

帕金森病相关 DJ-1 介导的糖酵解副产物降解的反应机制

阅读:9
作者:Watanabe Aiko, Ogiwara Shizuka, Saito Mirei, Mishima Masaki, Yamashina Masahiro, Ishitani Ryuichiro, Ito Yutaka, Tanaka Keiji, Koyano Fumika, Yamano Koji, Kosako Hidetaka, Moriwaki Yoshitaka, Matsuda Noriyuki
DJ-1/PARK7 is the causative gene for hereditary recessive Parkinson's disease. Recent studies have reported that DJ-1 hydrolyzes cyclic 3-phosphoglyceric anhydride (cPGA), a highly reactive metabolite. However, the molecular mechanisms underlying cPGA hydrolase activity have yet to be fully elucidated. To gain a more comprehensive understanding of this activity in DJ-1, we performed molecular simulations that predicted how DJ-1 recognizes and hydrolyzes cPGA. The accuracy of these structural predictions was validated through systematic mutational analyses exemplified by loss of activity with the A107P mutation. Although DJ-1 possesses both cPGA hydrolase and α-oxoaldehyde hydratase activities in vitro, we confirmed that DJ-1 dysfunction caused an increase in cPGA-derived modifications but had no effect on α-oxoaldehyde-derived modifications in cells. Importantly, A107 and P158, pathogenic missense mutation sites found in Parkinson's disease patients, are critical for cPGA hydrolysis both in vitro and in cells. The evidence-based catalytic mechanism for DJ-1 hydrolysis of cPGA that we propose here explains their pathophysiological significance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。