Interactions between chemical drugs and their target proteins are fundamental to drug screening and precision therapy in modern clinical medicine. However, elucidating these interactions within living cells remains challenging due to the limited availability of efficient detection methods. Despite substantial efforts, technical limitations still impede the identification of direct interactors. In this study, we present a simple method to detect the binding between a chemical drug and its target proteins in live cells. This approach utilizes a self-labeling protein (SLP) tag system, specifically HaloTag which is a modified haloalkane dehalogenase, combined with spatially localized expression of the SLP. To implement this system, dasatinib was conjugated to a HaloTag ligand, and the HaloTag protein was expressed in specific intracellular compartments, such as endosomes or F-actin structures. Upon treatment of cells with the HaloTag ligand-conjugated dasatinib, green fluorescent protein (GFP)-fused cytoplasmic dasatinib target proteins were observed to co-localize with the HaloTag at these subcellular structures, thereby indicating direct drug-target binding. This method provides a good spatial resolution with a high signal-to-noise ratio and low false-positive signals across a high background and false-positive/false-negative signals from endogenous proteins and/or non-specific binding. In this context, we believe that our method is a useful platform for visualizing the binding between chemical drugs and their cytoplasmic targets within living systems.
Imaging the Binding Between Dasatinib and Its Target Protein in Living Cells Using an SLP Tag System on Intracellular Compartments.
利用 SLP 标签系统对细胞内区室进行成像,研究达沙替尼与其靶蛋白在活细胞中的结合情况
阅读:10
作者:Park Da Kyeong, Lee Sang-Hee, Kweon Hee-Seok, Lee Zee-Won, Lee Kyung-Bok
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 13; 26(12):5705 |
| doi: | 10.3390/ijms26125705 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
