Fibroblast growth factor 9 (FGF9) is a member of FGF family, and abnormal expression of FGF9 can promote tumorigenesis. Cordycepin, a major bioactive component in fungus Cordyceps sinensis, could suppress various tumors. We have shown that cordycepin could inhibit FGF9-induced testicular tumor growth in vitro and in vivo with MA-10 mouse Leydig tumor cells. In the present study, the mechanisms related to apoptosis and autophagy were determined. Results show that cordycepin significantly suppressed cell viability and colony formation with correlatedly morphological change related to cell death in FGF9-treated MA-10 cells. Flow cytometry and western blotting results further demonstrate that cordycepin induced apoptosis through the cleavage of caspase-8, -9, -3 and PARP in FGF9-treated MA-10 cells. However, the expressions of LC3-II, beclin-1 and p62 were not stimulated by cordycepin with the presence of FGF9, suggesting cordycepin would activate apoptosis, but not autophagy, in FGF9-treated MA-10 cells. Moreover, inhibition of ERK signal pathway and autophagy would enhance cordycepin-induced cell death effects in FGF9-treated MA-10 cells, referring that ERK signaling was regulated under cordycepin and FGF9 treatments. In NOD-SCID mouse allograft model inoculated with MA-10 cells, cordycepin significantly suppressed tumor growth with the presence of FGF9, and the cleavage of caspase-3 could be observed in tumor tissue, implying cordycepin induced caspase cascade to suppress tumor growth. Moreover, cordycepin plus U0126, ERK inhibitor, further significantly suppressed tumor growth with the presence of FGF9 as compared to the FGF9 only group, confirming the involvement of ERK signaling in this event. In conclusion, cordycepin induced caspase and ERK pathways to promote MA-10 cell apoptosis, but not autophagy, with the presence of FGF9.
Cordycepin inhibits ERK pathway to suppress FGF9-induced tumorigenesis with MA-10 mouse Leydig tumor cells.
虫草素通过抑制 ERK 通路来抑制 FGF9 诱导的 MA-10 小鼠 Leydig 肿瘤细胞的肿瘤发生
阅读:5
作者:Chen Li-Ching, Chen Chin-Ying, Lee Yi-Ping, Huang Bu-Miin
| 期刊: | Journal of Food and Drug Analysis | 影响因子: | 3.000 |
| 时间: | 2023 | 起止号: | 2023 Aug 31; 31(3):485-501 |
| doi: | 10.38212/2224-6614.3464 | 种属: | Mouse |
| 研究方向: | 细胞生物学、肿瘤 | 信号通路: | MAPK/ERK |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
