Cancer cells differentially modulate mitochondrial respiration to alter redox state and enable biomass synthesis in nutrient-limited environments.

癌细胞通过差异性地调节线粒体呼吸作用来改变氧化还原状态,从而在营养匮乏的环境中合成生物质

阅读:5
作者:Chang Sarah M, Bin Munim Muhammad, Trojan Sonia E, Shevzov-Zebrun Anna, Abbott Keene L, Vander Heiden Matthew G
The cell NAD+/NADH ratio can constrain biomass synthesis and influence proliferation in nutrient-limited environments. However, which cell processes regulate the NAD+/NADH ratio is not known. Here, we find that some cancer cells elevate the NAD+/NADH ratio in response to serine deprivation by increasing mitochondrial respiration. Cancer cells that elevate mitochondrial respiration have higher serine production and proliferation in serine limiting conditions than cells with no mitochondrial respiration response, independent of serine synthesis enzyme expression. Increases in mitochondrial respiration and the NAD+/NADH ratio promote serine synthesis regardless of whether serine is environmentally limiting. Lipid deprivation can also increase the NAD+/NADH ratio via mitochondrial respiration in some cells, including cells that do not increase respiration following serine deprivation. Thus, in cancer cells where lipid depletion raises the NAD+/NADH ratio, proliferation in serine depleted environments improves when lipids are also depleted. Taken together, these data suggest that changes in mitochondrial respiration in response to nutrient deprivation can influence the NAD+/NADH ratio in a cell-specific manner to impact oxidative biomass synthesis and proliferation. Given the complexity of tumor microenvironments, this work provides a metabolic framework for understanding how levels of more than one environmental nutrient affects cancer cell proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。