CDC5L binds to ELAVL1 to inhibit pyroptosis in hepatocellular carcinoma through the Caspase 3/GSDME signaling pathway.

CDC5L 与 ELAVL1 结合,通过 Caspase 3/GSDME 信号通路抑制肝细胞癌中的细胞焦亡

阅读:5
作者:Liang Shuai, Zhu Zhongcheng, Tang Yangshuo, Zhou Shuhua, Xiao Moyan, Gong Xuejun, Ye Ke
Hepatocellular carcinoma (HCC) is associated with elevated rates of illness and mortality, posing a significant challenge to global health. Elevated levels of cell division cycle 5 like (CDC5L) in HCC predict a poor prognosis. The present study aimed to elucidate the role of CDC5L in HCC. First, CDC5L expression was detected using bioinformatics analysis and validated on clinical samples and cells. Next, CDC5L was knocked down and overexpressed. CDC5L and Caspase 3 knockdown was conducted to explore the effect on pyroptosis in HCC. The mechanisms of HCC pyroptosis were investigated by interfering with and overexpressing ELAV like RNA binding protein 1 (ELAVL1), as well as interfering with CDC5L and overexpressing ELAVL1. Finally, the role of CDC5L/ELAVL1 in regulating Caspase 3/Caspase 3‑-gasdermin E (GSDME) in HCC pyroptosis was validated through cellular and animal experiments. It was found that CDC5L expression was increased in HCC. Elevated CDC5L levels were linked to adverse outcomes in HCC. Suppressing CDC5L expression reduced cell viability, curbed cell proliferation and diminished cell migration and invasion capabilities, while simultaneously enhancing pyroptosis. Additionally, CDC5L knockdown resulted in a progressive decline in tumor volume and a decrease in tumor size and weight. CDC5L overexpression exerted an opposite effect. Moreover, regulating pyroptosis in HCC by CDC5L was dependent on Caspase family. Following CDC5L knockdown, tumor volume steadily diminished, tumor mass shrank and tumor weight was correspondingly reduced. ELAVL1 overexpression reversed these effects. CDC5L competitively bound to ELAVL1 to inhibit the binding of ELAVL1 with Caspase 3 mRNA, thereby regulating HCC pyroptosis. Finally, cellular and animal experiments confirmed that silencing CDC5L/ELAVL1 regulated Caspase 3/GSDME to promote HCC pyroptosis and inhibit tumor progression. In conclusion, CDC5L bound to ELAVL1 to inhibit pyroptosis in HCC through Caspase 3/GSDME signaling pathway, offering a promising therapeutic strategy for improving the prognosis and treatment of HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。