BACKGROUND: Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme in the de novo Serine synthesis pathway (SSP), a highly regulated pathway overexpressed in several tumors. Specifically, PHGDH expression is dynamically regulated during different stages of tumor progression, promoting cancer aggressiveness. Previously, we demonstrated that high Serine (Ser) availability, obtained by increased exogenous uptake or increased PHGDH expression, supports 5-Fluorouracil (5-FU) resistance in colorectal cancer (CRC). Beyond its metabolic role in sustaining Ser biosynthesis, different "non-enzymatic roles" for PHGDH have recently been identified. The present study aims to investigate non-enzymatic mechanisms through which PHGDH regulates 5-FU response in CRC. METHODS: Overexpression and gene silencing approaches have been used to modulate PHGDH expression in human CRC cell lines to investigate the role of this enzyme in 5-FU cellular response. Identified mechanisms have been validated in selected 5-FU resistant cell lines, CRC patients-derived tumor tissue samples, and patients-derived 3D organoids. Transcriptomic analysis was performed on wild-type and PHGDH-silenced cell lines, allowing the identification of pathways responsible for PHGDH-mediated 5-FU resistance. The relevance of identified genes was validated in vitro and in vivo in a CRC xenograft model. RESULTS: PHGDH expression is highly variable among CRC tissues and patient-derived 3D organoids. A retrospective analysis of CRC patients highlighted a correlation between PHGDH expression and therapy response. Coherently, the modulation of PHGDH expression by gene silencing/overexpression affects 5-FU sensitivity in CRC cell lines. Transcriptomic analysis on CRC cell lines stably silenced for PHGDH evidenced down regulation in Hedgehog (HH) pathway. Accordingly, in vitro and in vivo studies demonstrated that the combined treatment of 5-FU and HH pathway inhibitors strongly hinders CRC cell survival and tumor growth in CRC xenograft models. CONCLUSIONS: PHGDH sustains 5-FU resistance in CRC by mediating the upregulation of the HH signaling; targeting the here identified PHGDH-HH axis increases 5-FU susceptibility in different CRC models suggesting the 5-FU/HH-inhibitors combinatorial therapeutic strategy as a valid approach to counteract drug resistance in CRC.
PHGDH drives 5-FU chemoresistance in colorectal cancer through the Hedgehog signaling.
PHGDH 通过 Hedgehog 信号通路驱动结直肠癌对 5-FU 化疗产生耐药性
阅读:5
作者:Mancini Caterina, Lori Giulia, Mattei Gianluca, Iozzo Marta, Desideri Dayana, Cianchi Fabio, Fortuna Laura, Passagnoli Federico, Massi Daniela, Ugolini Filippo, Messerini Luca, Piscuoglio Salvatore, Pezone Antonio, Magherini Francesca, Biagioni Alessio, Lottini Tiziano, Zambardino Demetra, Truglio Giuseppina Ivana, Petricci Elena, Magi Alberto, Arcangeli Annarosa, Maresca Luisa, Stecca Barbara, Pranzini Erica, Taddei Maria Letizia
| 期刊: | Journal of Experimental & Clinical Cancer Research | 影响因子: | 12.800 |
| 时间: | 2025 | 起止号: | 2025 Jul 10; 44(1):198 |
| doi: | 10.1186/s13046-025-03447-y | 研究方向: | 信号转导 |
| 疾病类型: | 肠癌 | 信号通路: | Hedgehog |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
