BACKGROUND: Heterochromatin is a fundamental component of eukaryotic chromosome architecture, crucial for genome stability and cell type-specific gene regulation. In mammalian nuclei, heterochromatin forms condensed B compartments, distinct from the transcriptionally active euchromatic A compartments. Histone H3 lysine 9 and lysine 27 trimethylation (H3K9me3 and H3K27me3) are two major epigenetic modifications that enrich constitutive and facultative heterochromatin, respectively. Previously, we found that the redistribution of H3K27me3 following the loss of H3K9 methylation contributes to heterochromatin maintenance, while the simultaneous loss of both H3K27me3 and H3K9 methylation induces heterochromatin decondensation in mouse embryonic fibroblasts. However, the spatial positioning of B compartments largely persists, suggesting additional mechanisms are involved. RESULTS: In this study, we investigated the role of H2AK119 monoubiquitylation (uH2A), a repressive chromatin mark deposited by Polycomb Repressive Complex 1 (PRC1), in maintaining heterochromatin structure following the loss of H3K9 and H3K27 methylation. We observed that uH2A and H3K27me3 are independently enriched in B compartments after H3K9 methylation loss. Despite the absence of H3K9me3 and H3K27me3, uH2A remained localized and contributed to heterochromatin retention. These results suggest that PRC1-mediated uH2A functions independently and cooperatively with H3K27me3 to maintain heterochromatin organization originally created by H3K9 methylation. CONCLUSION: Our findings highlight a compensatory role for uH2A in preserving heterochromatin structure after the loss of other repressive chromatin modifications. The PRC1-uH2A pathway plays a critical role in maintaining the integrity of B compartments and suggests that heterochromatin architecture is supported by a network of redundant epigenetic mechanisms in mammalian cells.
H3K27me3 and the PRC1-H2AK119ub pathway cooperatively maintain heterochromatin and transcriptional silencing after the loss of H3K9 methylation.
H3K27me3 和 PRC1-H2AK119ub 通路在 H3K9 甲基化丧失后协同维持异染色质和转录沉默
阅读:4
作者:Fukuda Kei, Shimura Chikako, Shinkai Yoichi
| 期刊: | Epigenetics & Chromatin | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 May 2; 18(1):26 |
| doi: | 10.1186/s13072-025-00589-3 | 研究方向: | 表观遗传 |
| 信号通路: | DNA甲基化 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
