Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers.

挤出喷泉受到 WAPL 依赖的内聚素释放和 CTCF 屏障的限制

阅读:8
作者:Liu Ning Qing, Magnitov Mikhail, Schijns Marijne M G A, van Schaik Tom, Teunissen Hans, van Steensel Bas, de Wit Elzo
Interphase chromosomes are mainly shaped by loop extrusion and compartmentalisation mechanisms. However, their temporal component and cause-effect relationships remain largely unknown. In this study, we use acute degradation of WAPL, CTCF and cohesin in mouse embryonic stem cells to investigate the dynamics of loop extrusion and its relationship to compartmentalisation. Stabilisation of cohesin on chromatin by depletion of WAPL results in the formation of extended loops and promotes looping between non-convergent CTCF sites. Loss of WAPL also results in a rapid decrease in compartmentalisation, which is reversed by subsequent removal of cohesin, directly demonstrating the opposite role of extrusion on compartmentalisation. Using combined depletion of WAPL and CTCF, we identify fountains, a feature of chromosome organisation that emanates from enhancer regions and exhibits strong cohesin binding. Fountains form rapidly after mitosis and early in mammalian development. Cohesin depletion confirms that fountains are cohesin dependent, and their disruption leads to the downregulation of fountain-proximal genes, suggesting a role in gene regulation. Taken together, by exploiting the temporal precision of acute protein depletion, our study reveals fountains as an extrusion-mediated, fast-forming feature of 3D genome organisation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。