Male fertility is strongly influenced by environmental exposures, lifestyle, and advancing age. While advanced paternal age (APA) has been linked with a progressive decline in male fertility, poor reproductive outcomes, and decreased offspring health, the molecular mechanisms underlying these alterations remain unclear. In this work, we investigated the impact of men's age on human sperm protein expression and phosphorylation to identify molecular alterations possibly responsible for the age-associated decline in male fertility. Semen samples from volunteers attending fertility consultations at the Hospital of Aveiro were collected, analyzed according to WHO's guidelines, and processed by the density gradient technique. The proteome and phosphoproteome of 19 normozoospermic human sperm samples divided into four age groups were evaluated by mass spectrometry: â¤30 years old; 31-35 years old; 36-40 years old; and >40 years old. Proteomic analysis revealed 46 differentially expressed proteins (DEPs) between groups, some of them associated with infertility-related phenotypes. Gene ontology (GO) analysis, performed using the DAVID database, revealed that DEPs in older men were enriched in pathways related to stress response, metabolism, and embryo implantation. Additionally, 94 differentially phosphorylated sites corresponding to 76 differentially expressed phosphorylated proteins between the groups were identified, related to key reproductive processes such as sperm motility, spermatogenesis, and sperm binding to zona pellucida, and involved in metabolic and stress response pathways, like HSF1 activation. The set of proteins and phosphorylated residues altered in the sperm fraction usually used in assisted reproductive technology (ART) highlights the need to consider the age of the male partner during fertility assessment and treatment planning. These markers can also be used to explain cases of idiopathic infertility, failure in ART, or repeated abortion associated with APA, overcoming the subjectivity of the conventional semen analysis.
Advanced Paternal Age and Sperm Proteome Dynamics: A Possible Explanation for Age-Associated Male Fertility Decline.
父亲年龄增长与精子蛋白质组动态变化:一种解释男性生育力随年龄下降的可能原因
阅读:8
作者:Santiago Joana, Silva Joana V, Santos Manuel A S, Fardilha Margarida
| 期刊: | Cells | 影响因子: | 5.200 |
| 时间: | 2025 | 起止号: | 2025 May 30; 14(11):813 |
| doi: | 10.3390/cells14110813 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
