Abnormal melanin production can lead to various pigmentary disorders, which significantly affect patients' quality of life and overall health. However, current clinical melanogenesis inhibitors have adverse side effects such as skin dryness, itching, erythema, etc. In this study, we used naturally isolated exosomes derived from Pinctada martensii mucus (PMMEXOs) and investigated the effects on melanin synthesis based on B16-F10 melanoma cells and zebrafish. We demonstrated that PMMEXOs effectively inhibited melanin production while exhibiting excellent biocompatibility. To elucidate the underlying mechanisms, RNA sequencing and bioinformatics analysis were employed, identifying 556 differentially expressed genes associated with PMMEXOs treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the involvement of the NF-κB signaling pathway in the regulation of melanogenesis. Further mechanistic studies confirmed that PMMEXOs significantly reduced tyrosinase activity and melanin content, accompanied by the downregulation of critical melanogenesis-related genes and proteins, including MITF, TYR, TYRP-1 and TRP-2. Notably, the anti-melanogenic effects of PMMEXOs were mediated by activation of the NF-κB signaling pathway, underscoring their regulatory role in melanin biosynthesis. Additionally, microRNA (miRNA) sequencing of PMMEXOs identified specific miRNAs implicated in immune regulation and modulation of the NF-κB pathway, further supporting their mechanistic involvement in melanin inhibition. These findings collectively position PMMEXOs as a promising and innovative therapeutic strategy for the prevention and treatment of pigmentary disorders such as melasma, age spots and wrinkles.
Biocompatible exosomes derived from Pinctada martensii mucus for therapeutic melanin regulation via α-MSH/NF-κB/MITF pathway.
利用源自马氏珠母贝粘液的生物相容性外泌体,通过α-MSH/NF-αB/MITF通路进行治疗性黑色素调节
阅读:6
作者:Mo Dandan, Zheng Weihao, Gao Zixin, Ma Ke, Yang Ke, Zeng Tao, Qin Chaozheng, Luo Yan, Zheng Li, Xu Sheng
| 期刊: | Regenerative Biomaterials | 影响因子: | 8.100 |
| 时间: | 2025 | 起止号: | 2025 Jul 3; 12:rbaf072 |
| doi: | 10.1093/rb/rbaf072 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
