Microneedle patches for topical administration of photodynamic therapy (PDT) sensitizers are attractive owing to their safety, selectivity, and noninvasiveness. However, low-efficiency photosensitizer delivery coupled with the limitations of the hypoxic tumor microenvironment remains challenging. To overcome these issues, we developed an effective microneedle patch based on intermolecular electrostatic interactions within a photosensitizer matrix containing a zinc-containing porphyrin analogue, ZnBP (w). This design improved the mechanical strength of the microneedle patch and enhanced the photosensitizer loading efficiency in aqueous environments. A key feature of the system is efficient electron transfer between ZnBP (w) and NADH upon photoirradiation. Electrostatic interactions between ZnBP (w) and NADH were hypothesized to support initial binding and subsequent photoinduced electron transfer, disrupting NADH/NAD(+) homeostasis and inducing tumor cell death. The developed microneedle patch demonstrated an antiangiogenesis effect in a vascular malformation model and an antitumor effect in a melanoma mouse model after transdermal administration. This study highlights the benefits of electrostatic interactions in designing microneedle PDT patches and their clinical potential, particularly in reducing systemic phototoxicity.
Electrostatic Force-Enabled Microneedle Patches that Exploit Photoredox Catalysis for Transdermal Phototherapy.
利用静电力实现的微针贴片,通过光氧化还原催化进行透皮光疗
阅读:5
作者:Zhang Hang, Xie Wen-Chuan, Yao Yuhang, Tang Zi-Yi, Ni Wen-Xiu, Wang Bingwu, Gao Song, Sessler Jonathan L, Zhang Jun-Long
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Jan 15; 17(2):3038-3051 |
| doi: | 10.1021/acsami.4c18211 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
