TNF inhibits NKCC2 phosphorylation by a calcineurin-dependent pathway.

TNF 通过钙调磷酸酶依赖性途径抑制 NKCC2 磷酸化

阅读:5
作者:Hao Shoujin, Lasaracina Anna Pia, Epps Jarred, Ferreri Nicholas R
We previously demonstrated that tumor necrosis factor-alpha (TNF) inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) phosphorylation in the thick ascending limb (TAL); however, the underlying mechanism remains unclear. We tested the hypothesis that the induction of calcineurin (CN) activity and the expression of CN isoforms contribute to the mechanism by which TNF inhibits phospho-NKCC2 (pNKCC2) expression. CN activity increased by approximately twofold in primary cultures of medullary (m)TAL cells challenged with mouse recombinant TNF. In contrast, silencing TNF production in mTAL cells using lentivirus U6-TNF-ex4 reduced CN activity. pNKCC2 expression decreased in mTAL cells challenged with TNF, whereas inhibition of CN activity with cyclosporine A (CsA) increased pNKCC2 expression. Although mTAL cells express both the calcineurin A subunit (CNA) α and β isoforms, only CNA β isoform mRNA increased after mTAL cells were challenged with TNF. In vivo, both TNF and CNA β expression increased in outer medulla (OM) from mice given 1% NaCl in the drinking water for 7 days and intrarenal lentivirus silencing of TNF selectively reduced expression of CNA β. Intrarenal injection of a lentivirus that specifically silenced CNA β (U6-CNAβ-ex6) increased pNKCC2 expression and attenuated the inhibitory effects of TNF on pNKCC2 expression in freshly isolated TAL tubules. Collectively, the study is the first to demonstrate that TNF increases CN activity and specifically induces β-isoform expression in the kidney. Since NKCC2 is a known target of the CNA β isoform, these findings suggest that a CN-dependent signaling pathway involving this isoform contributes to the mechanism by which TNF inhibits pNKCC2 expression.NEW & NOTEWORTHY The beneficial immunosuppressive effects of CsA are tempered by renal side effects including reduction of GFR, proximal tubule damage, reduced urinary concentration, fibrosis and hypertension. As chronic administration of CN inhibitors frequently induce hypertension and renal nephropathy in humans, understanding the molecular mechanisms by which CN isoforms regulate the activity of renal transporters may provide the framework for developing new drugs that more selectively modulate the diverse functions of CN.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。