Polydopamine-functionalized acellular fish scale scaffolds for accelerated bone tissue regeneration.

聚多巴胺功能化的无细胞鱼鳞支架用于加速骨组织再生

阅读:6
作者:Su Shilong, Wang Ruideng, Bai Jinwu, Gao Shan, Zhou Rubing, Zhou Fang
The complex microenvironment changes in the bone defect site are the main reason for its refractory treatment, including the significant increase in the level of reactive oxygen species (ROS) and inflammatory dysregulation. There is an urgent need to develop some bioactive materials that can regulate the microenvironment and promote bone regeneration. This study proposed a new strategy for designing bone tissue engineering scaffolds based on fish scales and developed a polydopamine-functionalized acellular fish scale scaffold (PDA-AFS). The results showed that PDA-AFS had excellent mechanical properties, special three-dimensional surface topography, and biodegradability. In vitro results showed that PDA-AFS had good biocompatibility and cell adhesion ability, could effectively reduce ROS levels, and had immunomodulatory activity. More importantly, PDA-AFS can enhance osteogenic differentiation of bone marrow mesenchymal stem cells and promote endogenous bone regeneration in critical-sized calvarial bone defects. In addition, transcriptome analysis also provided clues to its possible osteogenic mechanism. Overall, we provide a new strategy for designing bone tissue engineering scaffolds based on fish scales for bone regeneration treatment of bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。