Effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier function, and the expression of NOD-like receptors in weaned piglets.

膳食中添加嗜酸乳杆菌对断奶仔猪生长性能、肠道物理屏障功能和NOD样受体表达的影响

阅读:5
作者:Wang Shiqiong, Li Haihua, Du Chenhong, Liu Qian, Yang Dongji, Chen Longbin, Zhu Qi, Wang Zhixiang
Lactobacillus supplementation is beneficial to the barrier function of the intestinal physical barrier in piglets. However, the mechanisms underlying this beneficial function remain largely unknown. Here, we investigated the effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier functioning, and NOD-like receptors (NLRs) expression in weaned piglets. Sixteen weaned piglets were randomly allocated to two groups. The control group received a corn-soybean basal diet, while the treatment group received the same diet adding 0.1% L. acidophilus, for 14 days. As a result, dietary L. acidophilus supplementation was found to increase the average daily gain (ADG) (P < 0.05), reduced serum diamine oxidase (DAO) activity (P < 0.05), increased the mRNA expression and protein abundance of occludin in the jejunum and ileum (P < 0.01), reduced the mRNA levels of NOD1 (P < 0.01), receptor interacting serine/threonine kinase 2 (RIPK2) (P < 0.05), nuclear factor κB (NF-κB) (P < 0.01), NLR family pyrin domain containing 3 (NLRP3) (P < 0.01), caspase-1 (P < 0.01), interleukin 1β (IL-1β) (P < 0.05) and IL-18 (P < 0.01) in the jejunum tissues of the weaned pigs. The expression of NLRP3 (P < 0.05), caspase-1 (P < 0.01), IL-1β (P < 0.05) and IL-18 (P < 0.05) was also reduced in the ileum tissues of the weaned pigs. These results showed that L. acidophilus supplementation improves the growth performance, enhances the intestinal physical barrier function, and inhibits the expression of NOD1 and NLRP3 signaling-pathway-related genes in jejunum and ileum tissues. They also suggest that L. acidophilus enhances the intestinal physical barrier functioning by inhibiting IL-1β and IL-18 pro-inflammatory cytokines via the NOD1/NLRP3 signaling pathway in weaned piglets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。