Intervertebral disc degeneration (IVDD) is a prevalent musculoskeletal disorder characterized by the deterioration of nucleus pulposus (NP) cells, leading to significant impairments in patients' quality of life. Elucidating the molecular mechanisms underlying IVDD is essential for developing effective therapeutic strategies. In this study, we utilized weighted gene co-expression network analysis to identify key module eigengenes (MEs) from the GSE124272 dataset, combined with differential gene expression analysis to pinpoint differentially expressed genes (DEGs). Functional enrichment analysis revealed that MEs were primarily associated with lipid metabolism and immune response, while DEGs were enriched in immune response and cell proliferation pathways. By integrating MEs, DEGs, and ferroptosis-related genes, we identified six hub genes (acyl-CoA synthetase long-chain family member 1 [ACSL1], BACH1, CBS, CP, AKR1C1, and AKR1C3). Consensus clustering analysis classified samples into two immune-related subgroups, C1 and C2, with single-sample gene set enrichment analysis demonstrating distinct immune scores between the subgroups. Notably, ACSL1 showed the strongest correlation with immune cell infiltration and was significantly up-regulated in the C1 subgroup, which exhibited higher immune scores. In vitro experiments confirmed elevated ACSL1 expression in an IL-1β-induced degenerative NP cell model. Silencing ACSL1 improved cell viability, reduced apoptosis, and restored mitochondrial membrane potential, alongside significant changes in intracellular Fe2+, malondialdehyde, and glutathione levels. In vivo experiments further validated increased ACSL1 expression in intervertebral disc tissues of IVDD rats. Collectively, these findings highlight ACSL1 as a potential biomarker for the early diagnosis of IVDD and a promising therapeutic target.
Identification and functional validation of ACSL1 as a biomarker regulating ferroptosis in nucleus pulposus cell.
鉴定和功能验证 ACSL1 作为调节髓核细胞铁死亡的生物标志物
阅读:24
作者:Zhou Yichi, Wang Ke, Ren Min, Wang Jiebin, Wang Fanglin, Zhuang Bingbing, Chen Lin, Zhang Zhiqiang, Wang Changsheng
| 期刊: | Bioscience Reports | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 2; 45(4):215-31 |
| doi: | 10.1042/BSR20241414 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
