Inferred developmental origins of brain tumors from single-cell RNA-sequencing data.

从单细胞 RNA 测序数据推断脑肿瘤的发育起源

阅读:8
作者:Wang Su, Curry Rachel Naomi, McDonald Malcolm F, Koh Hyun Yong, Erickson Anders W, Kleinman Claudia L, Taylor Michael D, Rao Ganesh, Deneen Benjamin, Harmanci Arif O, Serin Harmanci Akdes
BACKGROUND: The reactivation of neurodevelopmental programs in cancer highlights parallel biological processes that occur in both normal development and brain tumors. Achieving a deeper understanding of how dysregulated developmental factors play a role in the progression of brain tumors is therefore crucial for identifying potential targets for therapeutic interventions. Single-cell RNA-sequencing (scRNA-Seq) provides an opportunity to understand how developmental programs are dysregulated and reinitiated in brain tumors at single-cell resolution. The aim of this study is to identify the developmental origins of brain tumors using scRNA-Seq data. METHODS: Here, we introduce COORS (Cell Of ORigin like CellS), a computational tool trained on developmental human brain single-cell datasets that annotates "developmental-like" cell states in brain tumors. COORS leverages cell type-specific multilayer perceptron models and incorporates a developmental cell type tree that reflects hierarchical relationships and models cell type probabilities. RESULTS: Applying COORS to various brain cancer datasets, including medulloblastoma (MB), glioma, and diffuse midline glioma (DMG), we identified developmental-like cells that represent putative cells of origin in these tumors. Our method provides both cell of origin classification and cell age regression, offering insights into the developmental cell types of tumor subgroups. COORS identified outer radial glia developmental cells within IDH(WT) glioma cells whereas oligodendrocyte precursor cells (OPCs) and neuronal-like cells in IDH(Mut). Interestingly, IDH(Mut) subgroup cells that map to OPC show bimodal distributions that are both early and late weeks in development. Furthermore, COORS offers a valuable resource by providing novel markers linked to developmental states within MB, glioma, and DMG tumor subgroups. CONCLUSIONS: Our work adds to our cumulative understanding of brain tumor heterogeneity and helps pave the way for tailored treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。