Doxorubicin (DOX) is an anthracycline chemotherapeutic agent that is clinically limited by doxorubicin-induced cardiotoxicity (DIC), with ferroptosis and apoptosis identified as key mechanisms. As an antioxidant enzyme, GPX4 undergoes ubiquitin-mediated degradation during myocardial ischemia-reperfusion injury; however, the role of its ubiquitination in DIC remains unclear. This study revealed that GPX4 undergoes ubiquitinated degradation during DIC, exacerbating ferroptosis and apoptosis in cardiomyocytes. NEDD4L was found to interact with GPX4, and its expression was upregulated in DOX-treated mouse myocardial tissues and cardiomyocytes. NEDD4L knockdown alleviated DIC, as well as ferroptosis and apoptosis in cardiomyocytes. Mechanistically, NEDD4L recognizes GPX4 through its WW domain and mediates K48-linked ubiquitination and degradation of GPX4 under DOX stimulation via its HECT domain. Knockdown of NEDD4L reduced DOX-induced GPX4 ubiquitination levels and subsequent degradation. Notably, while NEDD4L knockdown mitigated DOX-induced cell death, concurrent GPX4 knockdown attenuated this protective effect, indicating that GPX4 is a key downstream target of NEDD4L in regulating cardiomyocyte death. These findings identify NEDD4L as a potential therapeutic target for preventing and treating DIC.
NEDD4L-Mediated Ubiquitination of GPX4 Exacerbates Doxorubicin-Induced Cardiotoxicity.
NEDD4L介导的GPX4泛素化加剧阿霉素诱导的心脏毒性
阅读:8
作者:Ke Jiaxing, Li Lingjia, Chen Shuling, Liao Chenxin, Peng Feng, Chai Dajun, Lin Jinxiu
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 23; 26(17):8201 |
| doi: | 10.3390/ijms26178201 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
