Humanized Saccharomyces cerevisiae provides a facile and effective tool to identify damaging human variants that cause exosomopathies.

人源化酿酒酵母为识别导致外泌体病的有害人类变异体提供了一种简便有效的工具

阅读:11
作者:Ahammed Khondakar Sayef, Fasken Milo B, Corbett Anita H, van Hoof Ambro
The RNA exosome is an evolutionarily conserved, multiprotein complex that is the major RNase in 3' processing and degradation of a wide range of RNAs in eukaryotes. Single amino acid changes in RNA exosome subunits cause rare genetic diseases collectively called exosomopathies. However, distinguishing disease-causing variants from nonpathogenic ones remains challenging, and the mechanism by which these variants cause disease is largely unknown. Previous studies have employed a budding yeast model of RNA exosome-linked diseases that relies on mutating the orthologous yeast genes. Here, we develop a humanized yeast model of exosomopathies that allows us to unambiguously assess damaging effects of the exact patient variant in budding yeast. Individual replacement of the yeast subunits with corresponding mammalian orthologs identified 6 out of 9 noncatalytic core subunits of the budding yeast RNA exosome that can be replaced by a mammalian subunit, with 3 of the replacements supporting close to normal growth. Further analysis of the disease-associated variants utilizing the hybrid yeast/mammalian RNA exosome revealed functional defects caused by both previously characterized and uncharacterized variants of EXOSC2, EXOSC4, EXOSC7, and EXOSC9. Analysis of the protein levels of these variants indicates that a subset of the patient-derived variants causes reduced protein levels, while other variants are defective but are expressed as well as the reference allele, suggesting a more direct contribution of these residues to RNA exosome function. This humanized yeast model of exosomopathies provides a convenient and sensitive genetic tool to help distinguish damaging RNA exosome variants from benign variants. This disease model can be further exploited to uncover the underpinning mechanism of RNA exosome defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。