This study investigated the roles and mechanisms of PINK1 activity in neonatal hypoxia-induced seizures with shRNA intervention targeting translocase outer mitochondrial membrane 7 (TOM7), the positive regulator of PINK1 autophosphorylation, or overlapping with the m-AAA protease 1 homolog (OMA1), the negative regulator of PINK1 autophosphorylation. Studies have suggested that in hypoxia-induced neonatal seizures, the phosphorylation level of PINK1 is significantly increased and the mitophagic pathway is activated, accompanied by neuronal damage and learning-memory deficits. Inhibiting PINK1 phosphorylation by reducing TOM7 expression alleviated mitophagy, mitochondrial oxidative stress, neuronal damage and seizures. In contrast, the inhibition of OMA1 expression resulted in a further increase in PINK1 phosphorylation and aggravated hypoxia-induced seizures and neuronal injury. This study implicated PINK1 activity in neonatal hypoxia and suggest that attenuated PINK1 autophosphorylation may have neuroprotective and anti-seizure effects in neonatal hypoxia.
Attenuated PINK1 autophosphorylation play neuroprotective and anti-seizure roles in neonatal hypoxia.
PINK1 自磷酸化减弱在新生儿缺氧中发挥神经保护和抗癫痫作用
阅读:15
作者:Yuan Yi, Wang Xiaoqian, Cui Yaru, Zhou Hua, Li Wenna, Teng Qian, Wang Hongjin, Sun Bohan, Wang Qiaoyun, Sun Hongliu, Tang Jianhua
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 29; 15(1):15078 |
| doi: | 10.1038/s41598-025-99915-8 | 研究方向: | 神经科学 |
| 疾病类型: | 癫痫 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
