Retinoid-impregnated nanoparticles enable control of bone growth by site-specific modulation of endochondral ossification in mice.

视黄酸浸渍的纳米颗粒能够通过对小鼠软骨内成骨进行部位特异性调节来控制骨骼生长

阅读:15
作者:Matsuoka Masatake, Uchibe Kenta, Tang Ningfeng, Tian Hongying, Suzuki Akiko, Oichi Takeshi, Usami Yu, Alferiev Ivan, Otsuru Satoru, Abzug Joshua M, Herzenberg John E, Pacifici Maurizio, Enomoto-Iwamoto Motomi, Chorny Michael, Iwamoto Masahiro
Growth-plate (GP) injures in limbs and other sites can impair GP function and cause deceleration of bone growth, leading to progressive bone lengthening imbalance, deformities and/or physical discomfort, decreased motion and pain. At present, surgical interventions are the only means available to correct these conditions by suppressing the GP activity in the unaffected limb and/or other bones in the ipsilateral region. Here, we aimed to develop a pharmacologic treatment of GP growth imbalance that involves local application of nanoparticles (NP)-based controlled release of a selective retinoic acid nuclear receptor gamma (RARγ) agonist drug. When RARγ agonist-loaded NP were implanted near the medial and lateral sides of proximal tibial growth plate in juvenile C57BL/6J mice, the GP underwent involution and closure. Overall tibia length was shortened compared to the contralateral element implanted with drug-free control NP. Importantly, when the RARγ agonist NP were implanted on the lateral side only, the adjacent epiphysis tilted toward the lateral side, leading to apical angulation of the tibia. In contrast to the local selectivity of these responses, systemic administration of RARγ agonists led to GP closure at many sites, inhibiting skeletal growth over time. Agonists for RARα and RARβ elicited no obvious responses over parallel regimens. Our findings provide novel evidence that RARγ agonist-loaded NP can control activity, function and directionality of a targeted GP, offering a potential and clinically-relevant alternative or supplementation to surgical correction of limb length discrepancy and angular deformities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。