Mesoscale orchestration of collagen-based hierarchical mineralization.

胶原蛋白基分级矿化的介观尺度调控

阅读:10
作者:Shen Minjuan, Zhang Chunyan, Zhang Yangyang, Lu Danyang, Yuan Jian, Wang Zhiyong, Wu Mengjie, Zhu Mengqi, Chen Qianming
Mesoscale building blocks are instrumental in bridging multilevel hierarchical mineralization, endowing macroscale entities with remarkable functionality and mechanical properties. However, the mechanism orchestrating the homogeneous morphology of mesoscale mineralized motifs in collagen-based hard tissues remains unknown. Here, utilizing avian tendons as a mineralization model, we reveal a robust correlation between the mesoscale mineralized spherules and the presence of phosvitin. By designing a phosvitin-stabilized biomineral cluster medium, we replicate the well-defined mesoscale spherical structure within collagen matrix in vitro and ex vivo. In-depth studies reveal that phosvitin undergoes a conformational transition in the presence of biominerals at physiological concentrations, and self-assembles into mineral-dense amyloid-like aggregates. The spatial binding of these mineral-dense aggregates to collagen serves as a template for guiding the formation of mineralized spherules on the mesoscale. On the nanoscale, this binding facilitates mineral precursor release and diffusion into the fibrils for intrafibrillar mineralization. This discovery underscores the pivotal role of phosvitin-biomineral aggregates in templating hierarchical mineralization from the mesoscale to the nanoscale. This study not only elucidates the intricate mechanism underlying the collagen-based mineralization hierarchy but also promotes a cutting-edge advance in highly biomimetic material design and regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。