Human adipose-derived mesenchymal stem cell-derived exosomes induce epithelial remodeling and anti-scar healing revealed by single-cell RNA sequencing.

单细胞 RNA 测序揭示,人脂肪间充质干细胞来源的外泌体可诱导上皮重塑和抗瘢痕愈合

阅读:6
作者:Fu Yu, Xie Jun-Ling, Zhang Xing-Liao, Xie Guang-Ming, Zhang Xin-Min, Han Yao-Ting, Xu Meng-Meng, Zhang Jing, Zhang Jun
The scar-free healing remains a clinical challenge, and requires the concerted efforts of multiple cell types, such as keratinocytes and fibroblasts. Exosomes derived from human adipose-derived mesenchymal stem cells (hADSC-Exos) have emerged as a promising therapeutic option. Nonetheless, a thorough understanding of the mechanisms underlying regenerative healing in response to hADSC-Exos treatment is still lacking. Here, we performed high-resolution single-cell RNA sequencing analysis of adult wild-type and hADSC-Exos-treated mice at postoperative day (POD) 14. hADSC-Exos influenced epithelial cells and fibroblasts, leading to scar-free wound healing. Among the epithelial cell subtypes, Lymphoid enhancer binding factor 1(high) proliferating keratinocytes (prolif KC) are particularly remodeled by hADSC-Exos. Prolif KC exhibit epithelial-mesenchymal plasticity (EMP). Cell-cell communication between keratinocytes and fibroblasts during anti-scar healing is modulated by tumor growth factor-β1, which promotes the EMP transition cascade. hADSC-Exos may inhibit wound fibrosis through the 14-3-3 zeta-YES-associated protein-Hippo signaling pathway. This study enhances our understanding of epithelial cell diversity and interactions in wound healing, highlighting hADSC-Exo-induced prolif KC as a potential reprogramming target. These epithelial cells are promising therapeutic targets for improving wound-healing strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。