Machine learning for fast identification of bacteraemia in SIRS patients treated on standard care wards: a cohort study.

利用机器学习快速识别在标准护理病房接受治疗的 SIRS 患者的菌血症:一项队列研究

阅读:6
作者:Ratzinger Franz, Haslacher Helmuth, Perkmann Thomas, Pinzan Matilde, Anner Philip, Makristathis Athanasios, Burgmann Heinz, Heinze Georg, Dorffner Georg
Bacteraemia is a life-threating condition requiring immediate diagnostic and therapeutic actions. Blood culture (BC) analyses often result in a low true positive result rate, indicating its improper usage. A predictive model might assist clinicians in deciding for whom to conduct or to avoid BC analysis in patients having a relevant bacteraemia risk. Predictive models were established by using linear and non-linear machine learning methods. To obtain proper data, a unique data set was collected prior to model estimation in a prospective cohort study, screening 3,370 standard care patients with suspected bacteraemia. Data from 466 patients fulfilling two or more systemic inflammatory response syndrome criteria (bacteraemia rate: 28.8%) were finally used. A 29 parameter panel of clinical data, cytokine expression levels and standard laboratory markers was used for model training. Model tuning was performed in a ten-fold cross validation and tuned models were validated in a test set (80:20 random split). The random forest strategy presented the best result in the test set validation (ROC-AUC: 0.729, 95%CI: 0.679-0.779). However, procalcitonin (PCT), as the best individual variable, yielded a similar ROC-AUC (0.729, 95%CI: 0.679-0.779). Thus, machine learning methods failed to improve the moderate diagnostic accuracy of PCT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。