Reactive oxygen species regulate adipose-osteogenic lineage commitment of human mesenchymal stem cells by modulating gene expression of C/EBP homology protein and aldo-keto reductase family 1 member A1.

活性氧通过调节 C/EBP 同源蛋白和醛酮还原酶家族 1 成员 A1 的基因表达来调节人类间充质干细胞的脂肪-骨谱系分化

阅读:6
作者:Chiang Chen Hao, Kao Yu-Chieh, Lin Yi-Hui, Ma Yi-Shing, Wu Yu-Ting, Jian Bo-Yan, Wei Yau-Huei, Chen Chuan-Mu, Liou Ying-Ming
BACKGROUND: Bone-derived mesenchymal stem cells (BMSCs) are multipotent stem cells capable of differentiating into adipocytes and osteoblasts. Dysfunctional differentiation, characterized by a shift from osteoblastogenesis to adipogenesis, is closely associated with metabolic and senile osteoporosis. The Aldo-keto reductase family 1 member A1 (Akr1A1) enzyme, which utilizes NADPH to reduce aldehyde groups to alcohols, has emerged as a potential regulator. This study investigates the role of reactive oxygen species (ROS) in modulating Akr1A1 expression during the lineage differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. RESULTS: Our findings demonstrate that increased ROS levels enhance the expression of C/EBP homology protein (CHOP) and Akr1A1 during adipogenic differentiation. Conversely, reduced ROS levels suppress CHOP and Akr1A1 expression in osteogenically committed cells. Functional studies involving Akr1A1 silencing and overexpression revealed that Akr1A1 expression levels dictate MSC lineage commitment without altering ROS production or CHOP expression. Knockdown of Akr1A1 suppressed adipogenesis while promoting osteoblastogenesis, accompanied by upregulation of SIRT1, PGC-1α, TAZ, and other osteogenic transcription factors. In contrast, overexpression of Akr1A1 reduced SIRT1, PGC-1α, and TAZ levels, thereby enhancing adipogenesis and inhibiting osteogenesis. These findings position Akr1A1 as a downstream target of the ROS/CHOP signaling pathway. Using an oxidative stress cell model induced by D-galactose in BMSCs, we confirmed that elevated ROS levels upregulate CHOP and Akr1A1 expression, preferentially driving differentiation into adipocytes over osteoblasts. CONCLUSIONS: Our results reveal that intracellular ROS modulate CHOP and Akr1A1 expression, which regulate commitment to adipogenic and osteogenic lineages. This regulation appears to occur through inhibiting SIRT1-dependent pathways, shedding light on potential therapeutic targets for metabolic and age-related osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。