A pathological missense mutation in the deubiquitinase USP5 leads to insensitivity to pain.

去泛素化酶 USP5 中的致病性错义突变会导致痛觉丧失

阅读:9
作者:Antunes Flavia T T, Gandini Maria A, Garcia-Caballero Agustin, Huang Sun, Ali Md Yousof, Gambeta Eder, Souza Ivana A, Harding Erika K, Ferron Laurent, Stray-Pedersen Asbjorg, Gadotti Vinicius M, Zamponi Gerald W
Cav3.2 T-type calcium channels and their dysregulation by the deubiquitinase USP5 contribute to development of inflammatory and neuropathic pain. We report on a pediatric patient with a de novo heterozygous missense mutation R24W in USP5 who exhibits pain insensitivity. We created a CRISPR knock-in mouse harboring this mutation and performed detailed behavioral analyses in acute and chronic pain models. Heterozygous R24W mice of both sexes are resistant to acute pain and to thermal hypersensitivity in chronic inflammatory and neuropathic pain models. In contrast, only male R24W mice confer resistance to development of mechanical hypersensitivity. R24W mice lack upregulation of Cav3.2 and USP5 that is normally observed with CFA-induced inflammation. Moreover, mutant USP5 exhibits a dramatic reduction in enzymatic activity but stronger interactions with Cav3.2. Hence, R24W mutant USP5 is a critical regulator of chronic and acute pain states in humans by acting as a dominant-negative regulator of Cav3.2. Our data validate USP5 as a potential therapeutic target for chronic pain in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。