A prominent feature of the hepatic response to injury is production of a fetal isoform of fibronectin, a splice variant containing the EIIIA region, which appears very early after injury and derives from sinusoidal endothelial cells. Previous studies have shown that it is instrumental in initiating the cellular response to injury, specifically the conversion of resting stellate cells to myofibroblast-like cells. The present work describes the regulation of this change in fibronectin expression. Using sinusoidal endothelial cells from normal or injured liver in primary culture, we show that exogenous transforming growth factor beta (TGFbeta) stimulates [EIIIA]Fn expression. To assess the role of TGFbeta in vivo, we used a chimeric IgG containing the extracellular portion of the TGFbeta type II receptor as a competitive inhibitor of the cytokine. Administered to animals at the time of injury, the inhibitor reduced expression of [EIIIA]Fn mRNA by 50% as compared to controls (P < 0.01). There was a corresponding decrease in [EIIIA]Fn protein production as judged by immunohistochemistry. Cell fractionation experiments indicated that the changes observed in whole-liver extracts were localized to sinusoidal endothelial cells. We conclude that TGFbeta initiates wound repair in part by stimulating endothelial expression of [EIIIA]Fn. Results with the soluble inhibitor of the TGFbeta type II receptor suggest a novel strategy for modulating wound repair in vivo.
Transforming growth factor-beta initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform.
转化生长因子-β通过诱导EIIIA-纤连蛋白剪接异构体启动大鼠肝脏伤口修复
阅读:4
作者:George J, Wang S S, Sevcsik A M, Sanicola M, Cate R L, Koteliansky V E, Bissell D M
| 期刊: | American Journal of Pathology | 影响因子: | 3.600 |
| 时间: | 2000 | 起止号: | 2000 Jan;156(1):115-24 |
| doi: | 10.1016/s0002-9440(10)64711-6 | 种属: | Rat |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
