Mesenchymal Stromal Cell Differentiation for Generating Cartilage and Bone-Like Tissues In Vitro

间充质基质细胞分化用于体外生成软骨和骨样组织

阅读:4
作者:Graziana Monaco, Yann D Ladner, Alicia J El Haj, Nicholas R Forsyth, Mauro Alini, Martin J Stoddart

Abstract

In the field of tissue engineering, progress has been made towards the development of new treatments for cartilage and bone defects. However, in vitro culture conditions for human bone marrow mesenchymal stromal cells (hBMSCs) have not yet been fully defined. To improve our understanding of cartilage and bone in vitro differentiation, we investigated the effect of culture conditions on hBMSC differentiation. We hypothesized that the use of two different culture media including specific growth factors, TGFβ1 or BMP2, as well as low (2% O2) or high (20% O2) oxygen tension, would improve the chondrogenic and osteogenic potential, respectively. Chondrogenic and osteogenic differentiation of hBMSCs isolated from multiple donors and expanded under the same conditions were directly compared. Chondrogenic groups showed a notable upregulation of chondrogenic markers compared with osteogenic groups. Greater sGAG production and deposition, and collagen type II and I accumulation occurred for chondrogenic groups. Chondrogenesis at 2% O2 significantly reduced ALP gene expression and reduced type I collagen deposition, producing a more stable and less hypertrophic chondrogenic phenotype. An O2 tension of 2% did not inhibit osteogenic differentiation at the protein level but reduced ALP and OC gene expression. An upregulation of ALP and OC occurred during osteogenesis in BMP2 containing media under 20% O2; BMP2 free osteogenic media downregulated ALP and also led to higher sGAG release. A higher mineralization was observed in the presence of BMP2 during osteogenesis. This study demonstrates how the modulation of O2 tension, combined with tissue-specific growth factors and media composition can be tailored in vitro to promote chondral or endochondral differentiation while using the same donor cell population.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。