Exosomes, which are cell-secreted lipid-based nanoparticles, play a crucial role in intercellular communication by encapsulating and delivering various biomolecules such as DNA, mRNA, miRNA, and proteins. They offer potential as drug delivery systems (DDSs) based on their ability to cross biological barriers, use natural communication mechanisms, and minimize immunogenicity. However, the heterogeneity of exosomes presents a bottleneck for functional analysis and the development of exosome-based DDSs. Therefore, engineering techniques are needed to produce exosomes or exosome-mimicking nanoparticles with controlled characteristics, including the presentation of specific exosomal proteins on their surface. Here, a one-step microfluidic method for producing exosome-mimicking lipid-based nanoparticles decorated with specific exosomal proteins was developed, enabling control over the composition and characteristics of the resulting exosomes. Exosome-mimicking nanoparticles decorated with tetraspanin proteins (CD9, CD63, CD81) and integrins (ITG αVβ5, ITG α6β4), which are involved in cell signaling and organ targeting, were thereby generated. Investigating the impact of these exosomal proteins on RNA delivery efficiency revealed that ITG αVβ5-decorated exosome-mimicking nanoparticles significantly enhance RNA delivery both in vitro and in vivo. This study provides an approach for producing precisely decorated exosome-mimicking nanoparticles, which may be applied to elucidate the functions of exosomal proteins and develop targeted DDSs.
Microfluidic Production of Exosome-Mimicking Lipid Nanoparticles for Enhanced RNA Delivery: Role of Exosomal Proteins.
微流控技术制备外泌体模拟脂质纳米颗粒以增强RNA递送:外泌体蛋白的作用
阅读:6
作者:Maeki Masatoshi, Niwa Ayuka, Oyama Shota, Aratani Kyoko, Ito Rina, Suzuki Yuichi, Sato Yusuke, Ishida Akihiko, Harashima Hideyoshi, Tokeshi Manabu
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 23; 17(29):41666-41679 |
| doi: | 10.1021/acsami.5c06927 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
