BACKGROUND: Diabetes mellitus induces chronic complications such as cardiovascular damage, cataracts and retinopathy, nephropathy, and polyneuropathy. The main aim of the study was to isolate and identify both of bacterial strain and exopolysaccharide to assess the possible efficiency of exopolysaccharide (BSEPS) from Bacillus subtilus sp .suppress on cardiovascular diseases, atherogenic and coronary risk indices in diabetic rats. METHODS: The bacterial strain used was isolated from mangrove tree sediment by serial dilution and the spread-plate technique and identified by morphological, physiological, and biochemical characteristics, and by 16S rRNA analysis. The BSEPS was extracted from the bacterial supernatant by four volumes child ethanol then the functional groups, MW and chemical analysis were detected by Fourier-transform infrared (FTIR), gel permeation chromatograph (GPC) and High-performance liquid chromatography (HPLC). Also an antioxidant activity was measured by using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Thirty-two male Sprague-Dawley rats were equally randomized into four groups: control group supplemented with normal saline (Group I); the second group supplemented with BSEPS (Group II); diabetic group supplemented with normal saline (Group III) and the diabetic group supplemented with BSEPS (Group IV). Diabetes was induced by Streptozotocin (STZ) (65 mg/kg BW) intraperitoneally. BSEPS (100 mg/kg BW) was administered orally for four weeks, following STZ induction. RESULTS: The isolated strain was identified based on 16S rRNA sequence as Bacillus subtilis sp. suppress. A preliminary chemical analysis of BSEPS indicated that the monosaccharides were mannuronic acid, glucuronic acid, glucose, galactose, and mannose in a molar ratio of 1.6:1.5:1.0:2.3:1.4, respectively, with a molecular weight of 1.66 Ã 10(4) g mol(-1) and a molecular number of 7.64 Ã 10(3) g mol(-1). BSEPS inhibited 2,2-diphenyl-1-picrylhydrazyl radical activity, and BSEPS supplement reduced glucose (p < 0.05) and troponin levels while insulin levels increased (p < 0.05). BSEPS also reduced total serum cholesterol, low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), and triglycerides, and elevated high-density lipoprotein-cholesterol (HDL). In parallel, intercellular adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) levels in STZ-induced diabetic rats were reduced. Moreover, polysaccharides reduced atherogenic and coronary risk indices, which were confirmed by histopathological examination of the heart and aorta. CONCLUSIONS: Our study suggests that BSEPS improves hyperglycemia, dyslipidemia, and cardiovascular disease risk in STZ-induced diabetic rats.
Effect of polysaccharide from Bacillus subtilis sp. on cardiovascular diseases and atherogenic indices in diabetic rats.
枯草芽孢杆菌多糖对糖尿病大鼠心血管疾病和动脉粥样硬化指标的影响
阅读:5
作者:Ghoneim Mona A M, Hassan Amal I, Mahmoud Manal G, Asker Mohsen S
| 期刊: | BMC Complementary and Alternative Medicine | 影响因子: | 3.400 |
| 时间: | 2016 | 起止号: | 2016 Mar 31; 16:112 |
| doi: | 10.1186/s12906-016-1093-1 | 种属: | Rat |
| 研究方向: | 心血管 | 疾病类型: | 动脉粥样硬化、糖尿病 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
