Cognitive dysfunction is one of the common complications of cerebral ischemia-reperfusion (CI/R) injury after ischemic stroke. Neuroinflammation and oxidative stress are the core pathological mechanism of CI/R injury. The activation of brain derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling antagonize cognitive dysfunction in a series of neuropathy. Naringenin (NAR) improves cognitive function in many diseases, but the role of NAR in CI/R injury-induced cognitive dysfunction remains unexplored. The study aimed to explore the potential protective effects of NAR in CI/R injury-induced cognitive dysfunction and underlying mechanism. The rats were exposed to transient middle cerebral artery occlusion (MCAO) and then treated with distilled water or NAR (50 or 100â mg/kg/day, p.o.) for 30 days. The Y-maze test, Novel object recognition test and Morris water maze test were performed to assess cognitive function. The levels of oxidative stress and inflammatory cytokines were measured by ELISA. The expressions of BDNF/TrkB signaling were detected by Western blot. NAR prevented cognitive impairment in MCAO-induced CI/R injury rats. Moreover, NAR inhibited oxidative stress (reduced levels of malondialdehyde and 4-hydroxynonenal, increased activities of superoxide dismutase and Glutathione peroxidase) and inflammatory cytokines (reduced levels of tumor necrosis factor-α, Interleukin-1β and Interleukin-6), up-regulated the expressions of BDNF and p-TrkB in hippocampus of MCAO-induced CI/R rats. NAR ameliorated cognitive dysfunction of CI/R rats via inhibiting oxidative stress, reducing inflammatory response, and up-regulating BDNF/TrkB signaling pathways in the hippocampus.
Naringenin alleviates cognitive dysfunction in rats with cerebral ischemia/reperfusion injury through up-regulating hippocampal BDNF-TrkB signaling: involving suppression in neuroinflammation and oxidative stress.
柚皮苷通过上调海马 BDNF-TrkB 信号传导来缓解脑缺血/再灌注损伤大鼠的认知功能障碍:涉及抑制神经炎症和氧化应激
阅读:4
作者:Zhu Xiao-Qin, Gao Dong
| 期刊: | Neuroreport | 影响因子: | 1.700 |
| 时间: | 2024 | 起止号: | 2024 Mar 6; 35(4):216-224 |
| doi: | 10.1097/WNR.0000000000001989 | 种属: | Rat |
| 研究方向: | 信号转导、神经科学 | 疾病类型: | 神经炎症 |
| 信号通路: | Hippo | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
