Beclin1 Modulates Bone Homeostasis by Regulating Osteoclast and Chondrocyte Differentiation.

Beclin1 通过调节破骨细胞和软骨细胞分化来调节骨稳态

阅读:4
作者:Arai Atsushi, Kim Sol, Goldshteyn Vadim, Kim Terresa, Park No-Hee, Wang Cun-Yu, Kim Reuben H
Autophagy (ATG), an important cellular recycling process whereby macromolecules or organelles are encapsulated by autophagosome and degraded upon merging with lysosome, has recently been shown to play an essential role in bone biology. However, the involvement of ATG in bone and bone-related cells remains unclear. Here, we show that Beclin1, an ATG-related protein involved in ATG initiation, plays a pivotal role in osteoclasts. ATG was activated during osteoclast differentiation in vitro. Beclin1 was enhanced and required for osteoclast differentiation. Mechanistically, we found that TRAF6-mediated ubiquitination of Beclin1 at K117, but not ULK1-mediated phosphorylation, is required for RANKL-stimulated osteoclast differentiation. In vivo, mice lacking Beclin1 in CstK-expressing cells exhibited an increased cortical bone thickness caused by impaired osteoclasts' function. Interestingly, these mice also exhibited diminished trabecular bone mass, which was associated with a defect in cartilage formation and chondrocyte differentiation. Collectively, our study highlights the functional importance of ATG in osteoclasts and chondrocytes, and identifies ATG as a potential therapeutic target for managing bone-related diseases. © 2019 American Society for Bone and Mineral Research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。