High-Density Lipoprotein Subclasses and Noncardiovascular, Noncancer Chronic Inflammatory-Related Events Versus Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis.

高密度脂蛋白亚类与非心血管、非癌症慢性炎症相关事件和心血管事件:动脉粥样硬化的多民族研究

阅读:4
作者:Duprez Daniel A, Otvos James, Tracy Russell P, Feingold Kenneth R, Greenland Philip, Gross Myron D, Lima Joao A C, Mackey Rachel H, Neaton James D, Sanchez Otto A, Jacobs David R
BACKGROUND: High-density lipoprotein (HDL) particles have properties beyond reverse cholesterol transport. We hypothesized that their protection extends to inflammation-related disease. The predictive value of HDL particle subclasses and inflammatory markers was studied for noncardiovascular, noncancer chronic inflammation-related death and hospitalization, and for incident cardiovascular disease (CVD). METHODS AND RESULTS: A multiethnic, multicenter, prospective observational study was conducted in 6475 men and women (aged 45 to 84 years) free of known CVD at baseline with median follow-up of 10.1 years. Fasting venous samples were analyzed for baseline lipid profile and lipoprotein particles. We focused on the HDL family of variables (small-, medium-, and large-diameter HDL particles and HDL cholesterol). Analyses identified the sum of small- plus medium-diameter HDL particles as important. Small- plus medium-diameter HDL particles were inversely associated with diagnostic code-based noncardiovascular, noncancer chronic inflammation-related death and hospitalization (n=1054) independent of covariates: relative risk per SD 0.85 (95% CI: 0.79 to 0.91, P<0.0001). Small- plus medium-diameter HDL particles were also associated with adjudicated fatal and nonfatal coronary heart disease events (n=423): relative risk per SD 0.88 (95% CI 0.77 to 0.98, P=0.02). CONCLUSIONS: Small- plus medium-diameter HDL particles are an independent predictor for noncardiovascular, noncancer chronic inflammation-related death and hospitalization and for coronary heart disease events in subjects initially free of overt CVD. These findings support the hypothesis that smaller HDL particles of diameter <9.4 nm have anti-inflammatory properties in the general population.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。