An ovine septic shock model of live bacterial infusion.

绵羊败血症休克模型(活细菌输注)

阅读:21
作者:Obonyo Nchafatso G, Raman Sainath, Suen Jacky Y, Peters Kate M, Phan Minh-Duy, Passmore Margaret R, Bouquet Mahe, Wilson Emily S, Hyslop Kieran, Palmieri Chiara, White Nicole, Sato Kei, Farah Samia M, Gandini Lucia, Liu Keibun, Fior Gabriele, Heinsar Silver, Ijuin Shinichi, Kyun Ro Sun, Abbate Gabriella, Ainola Carmen, Sato Noriko, Lundon Brooke, Portatadino Sofia, Rachakonda Reema H, Schneider Bailey, Harley Amanda, See Hoe Louise E, Schembri Mark A, Li Bassi Gianluigi, Fraser John F
BACKGROUND: Escherichia coli is the most common cause of human bloodstream infections and bacterial sepsis/septic shock. However, translation of preclinical septic shock resuscitative therapies remains limited mainly due to low-fidelity of available models in mimicking clinical illness. To overcome the translational barrier, we sought to replicate sepsis complexity by creating an acutely critically-ill preclinical bacterial septic shock model undergoing active 48-h intensive care management. AIM: To develop a clinically relevant large-animal (ovine) live-bacterial infusion model for septic shock. METHODS: Septic shock was induced by intravenous infusion of the live antibiotic resistant extra-intestinal pathogenic E. coli sequence type 131 strain EC958 in eight anesthetised and mechanically ventilated sheep. A bacterial dose range of 2 × 10(5)-2 × 10(9) cfu/mL was used for the dose optimisation phase (n = 4) and upon dose confirmation the model was developed (n = 5). Post-shock the animals underwent an early-vasopressor and volume-restriction resuscitation strategy with active haemodynamic management and monitoring over 48 h. Serial blood samples were collected for testing of pro-inflammatory (IL-6, IL-8, VEGFA) and anti-inflammatory (IL-10) cytokines and hyaluronan assay to assess endothelial integrity. Tissue samples were collected for histopathology and transmission electron microscopy. RESULTS: The 2 × 10(7) cfu/mL bacterial dose led to a reproducible distributive shock within a pre-determined 12-h period. Five sheep were used to demonstrate consistency of the model. Bacterial infusion led to development of septic shock in all animals. The baseline mean arterial blood pressure reduced from a median of 91 mmHg (71, 102) to 50 mmHg (48, 57) (p = 0.004) and lactate levels increased from a median of 0.5 mM (0.3, 0.8) to 2.1 mM (2.0, 2.3) (p = 0.02) post-shock. The baseline median hyaluronan levels increased significantly from 25 ng/mL (18, 86) to 168 ng/mL (86, 569), p = 0.05 but not the median vasopressor dependency index which increased within 1 h of resuscitation from zero to 0.39 mmHg(-1) (0.06, 5.13), p = 0.065, and. Over the 48 h, there was a significant decrease in the systemic vascular resistance index (F = 7.46, p = 0.01) and increase in the pro-inflammatory cytokines [IL-6 (F = 8.90, p = 0.02), IL-8 (F = 5.28, p = 0.03), and VEGFA (F = 6.47, p = 0.02)]. CONCLUSIONS: This critically ill large-animal model was consistent in reproducing septic shock and will be applied in investigating advanced resuscitation and therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。