Functional cobalt-doped hydrogel scaffold enhances concurrent vascularization and neurogenesis.

功能性钴掺杂水凝胶支架可促进血管生成和神经发生

阅读:6
作者:Liu Junqing, Kang Jun, Zou Ting, Hu Mingxin, Zhang Yuchen, Lin Shulan, Liang Ye, Zhong Jialin, Zhao Yi, Wei Xi, Zhang Chengfei
Achieving functional tissue regeneration hinges on the coordinated growth of intricate blood vessels and nerves within the defect area. However, current strategies do not offer a reliable and effective way to fulfill this critical need. To address this challenge, a three-dimensional (3D) gelatin methacryloyl-multi-walled carbon nanotube/cobalt (GelMA-MWCNTs/Co) hydrogel with controlled release of cobalt (Co) ions was developed for hypoxia-mimicking and dual beneficial effects on promoting vasculogenesis and neurogenesis. GelMA-MWCNTs/Co hydrogel exhibited sustained release of Co ions, promoting laden cell viability and long-term cell survival. GelMA-MWCNTs/Co hydrogel effectively enhanced human umbilical vein endothelial cells (HUVECs) vasculogenesis when cocultured with stem cells from apical papilla (SCAP). Moreover, this hydrogel facilitated the interaction between the pre-formed vascular and neural-like structures generated by electrical stimulation-induced SCAP (iSCAP). Furthermore, our in vivo study revealed that the GelMA-MWCNTs/Co hydrogel remarkably enhanced neovascularization and accelerated anastomosis with the host vasculature. The pre-vascularized scaffolds boosted the presence of neural differentiated SCAP in the regenerated tissue. This study provided proof of integrating functional Co ions release materials and dental-derived stem cells within a hydrogel scaffold as a promising potential for achieving simultaneous vascularization and neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。