Dietary methionine restriction (MR) increases longevity and improves healthspan in rodent models. Young male C57BL/6J mice were placed on MR to assess effects on bone structure and formation. Mice were fed diets containing 0.86% or 0.12% methionine for 5 weeks. Fasting blood plasma was analyzed for metabolic and bone-related biomarkers. Tibiae were analyzed by histomorphometry, while femurs were analyzed by micro-CT and biomechanically using 4-point bending. MR mice had reduced plasma glucose and insulin, while FGF21 and FGF23 increased. Plasma levels of osteocalcin and osteoprotegrin were unaffected, but sclerostin and procollagen I decreased. MR induced bone marrow fat accretion, antithetical to the reduced fat depots seen throughout the body. Cortical bone showed significant decreases in Bone Tissue Density (BTD). In trabecular bone, mice had decreased BTD, bone surface, trabecula and bone volume, and trabecular thickness.. Biomechanical testing showed that on MR, bones were significantly less stiff and had reduced maximum load and total work, suggesting greater fragility. Reduced expression of RUNX2 occurred in bone marrow of MR mice. These results suggest that MR alters bone remodeling and apposition. In MR mice, miR-31 in plasma and liver, and miR-133a, miR-335-5p, and miR-204 in the bone marrow was elevated. These miRNAs were shown previously to target and regulate Osterix and RUNX2 in bone, which could inhibit osteoblast differentiation and function. Therefore, dietary MR in young animals alters bone structure by increasing miRNAs in bone and liver that can target RUNX2. J. Cell. Biochem. 118: 31-42, 2017. © 2016 Wiley Periodicals, Inc.
Methionine-Restricted Diet Increases miRNAs That Can Target RUNX2 Expression and Alters Bone Structure in Young Mice.
限制蛋氨酸的饮食会增加可靶向 RUNX2 表达的 miRNA,并改变幼鼠的骨骼结构
阅读:3
作者:Plummer Jason, Park Miri, Perodin Frantz, Horowitz Mark C, Hens Julie R
| 期刊: | Journal of Cellular Biochemistry | 影响因子: | 2.800 |
| 时间: | 2017 | 起止号: | 2017 Jan;118(1):31-42 |
| doi: | 10.1002/jcb.25604 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
