Subcellular distribution of RAD23B controls XPC degradation and DNA damage repair in response to chemotherapy drugs

RAD23B 的亚细胞分布控制化疗药物反应中的 XPC 降解和 DNA 损伤修复

阅读:6
作者:Xue You, Weiwei Guo, Lin Wang, Yongfan Hou, Huanhuan Zhang, Yi Pan, Ruomei Han, Meiqin Huang, Lujian Liao, Yan Chen

Abstract

The RAD23B-XPC complex in the nucleus plays a key role in the initial damage recognition during global genome nucleotide excision repair (NER). Within the complex, XPC, a product of Xeroderma pigmentosum C, recognizes and interacts with the unpaired bases in the undamaged DNA strand, while RAD23B stabilizes XPC. However, how RAD23B is regulated by other factors is not well known. We report here a mode of spatial regulation of RAD23B that controls XPC stability and DNA damage repair. We first identified that RAD23B was able to directly associate with PAQR3, a newly-discovered tumor suppressor implicated in many types of human cancers. PAQR3 reduced the protein level of XPC, together with accelerated degradation and enhanced polyubiquitination of XPC. Mechanistically, PAQR3 reduces nucleic distribution of RAD23B by tethering it to the Golgi apparatus, thus diminishing the amount of RAD23B proteins available to interact with XPC in the nucleus. The viability of gastric cancer cells upon treatment with chemotherapy drugs including etoposide, cisplatin and doxorubicin was reduced by PAQR3 overexpression, but enhanced by PAQR3 knockdown. The degree of DNA damage induced by these drugs, as measured by immunoblotting with γ-H2AX, was elevated by PAQR3 overexpression and lessened by PAQR3 knockdown. Furthermore, a synthetic peptide comprising the N-terminus of PAQR3 was able to recapitulate the activity of PAQR3 in reducing XPC stability and enhancing chemotherapy drug-induced DNA damage. In conclusion, our study reveals that RAD23B is controlled by subcellular compartmentation, thus affecting XPC-mediated DNA damage repair in cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。