We have previously reported that breast cancer cells which overexpress HER2 produce higher levels of VEGF than cells with low levels of HER2. This study tested the hypothesis that dual targeting of the VEGF (with VEGF-Trap) and HER2 (with trastuzumab) pathways would result in greater growth inhibition of HER2-overexpressing breast cancer xenografts than either agent alone. In this study we found that human and murine endothelial cells expressed high levels of VEGF receptors (VEGFR1, VEGFR2, & VEGFR3). VEGF-Trap decreased levels of secreted VEGF derived from both human and murine cells and effectively blocked VEGF-induced tyrosine phosphorylation of VEGFR2. VEGF-Trap as a single treatment inhibited tumor microvessel density (MVD), tumor vasculature, cell proliferation and tumor growth of BT474 xenografts in a dose-dependent manner from 2.5 mg/kg to 25 mg/kg. VEGF-Trap decreased levels of both human VEGF and PlGF protein in vivo. Trastuzumab as a single agent effectively inhibited BT474 tumor growth in a dose-dependent manner, associated with a decrease in human VEGF, tumor MVD and tumor cell proliferation. Treatment with a combination of VEGF-Trap (2.5-10 mg/kg) and trastuzumab (1 mg/kg) produced significantly greater inhibition of BT474 tumor growth than either individual agent, associated with greater inhibition of tumor MVD and tumor cell proliferation. Thus, VEGF-Trap in combination with trastuzumab produces superior growth inhibition of tumor xenografts which overexpress HER2, which may result from inhibition of both tumor angiogenesis and proliferation. Similar mechanisms may contribute to the clinical anti-tumor activity of trastuzumab in combination with inhibitors of VEGF signaling pathway in women with breast cancers which overexpress HER2.
Specific blockade of VEGF and HER2 pathways results in greater growth inhibition of breast cancer xenografts that overexpress HER2.
特异性阻断 VEGF 和 HER2 通路可显著抑制过度表达 HER2 的乳腺癌异种移植瘤的生长
阅读:6
作者:Le Xiao-Feng, Mao Weiqun, Lu Chunhua, Thornton Angela, Heymach John V, Sood Anil K, Bast Robert C Jr
| 期刊: | Cell Cycle | 影响因子: | 3.400 |
| 时间: | 2008 | 起止号: | 2008 Dec;7(23):3747-58 |
| doi: | 10.4161/cc.7.23.7212 | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
