Inhibition of Mitochondrial-Associated Protein MAGMAS Resensitizes Chemoresistant Prostate Cancer Cells to Docetaxel.

抑制线粒体相关蛋白 MAGMAS 可使耐药性前列腺癌细胞重新对多西他赛敏感

阅读:18
作者:Durán Alfonso M, Whitley Kristen, Santiago Krystal, Yoo Christian, Valdez Giancarlo, Cheng Kai Wen, Ochoa Pedro, de Semir David, Xiu Joanne, Chokkalingam Parthiban, Das Sasmita, Schaefer Eric S, Rowe Steven P, Das Bhaskar C, Casiano Carlos A, Almaguel Frankis
BACKGROUND/OBJECTIVES: Metastatic prostate cancer (PCa) is the leading cause of cancer-related deaths and a major contributor to cancer mortality in men. Most patients with metastatic PCa eventually develop metastatic castration-resistant prostate cancer (mCRPC), characterized by resistance to treatment with androgen-deprivation therapy, and often later the development of resistance to other types of agents. MAGMAS, a 13.8 kDa mitochondrial-associated protein, facilitates the import of nuclear-encoded proteins into the mitochondrial matrix. Overexpression of MAGMAS has been observed in several aggressive cancers, including breast, glioblastoma, and prostate cancer. When overexpressed, MAGMAS acts as a cytoprotective protein by scavenging reactive oxygen species (ROS), maintaining ROS levels that support cell proliferation while avoiding the induction of apoptosis. This study investigates the role of MAGMAS in therapy resistance in PCa cells. METHODS/RESULTS: Quantitative immunoblotting revealed that MAGMAS is endogenously upregulated in docetaxel-resistant (DR) PCa cell lines compared to their docetaxel-sensitive parental counterparts. While MAGMAS depletion alone did not affect the survival of DR cells, it significantly sensitized them to docetaxel (DTX), as indicated by a marked reduction in clonogenic potential. Additionally, transient knockdown of MAGMAS in these resistant cells significantly decreased the levels of ABCB1 protein. Consistent with these findings, sub-therapeutic inhibition of MAGMAS using the novel BT#9 inhibitor, in combination with increasing concentrations of DTX, enhanced the sensitivity of DR cells to DTX, as demonstrated by proliferation and clonogenic assays. Lastly, RNA tumor expression predicts overall survival (OS). CONCLUSIONS: These results implicate MAGMAS in PCa chemoresistance and suggest that targeting this protein could provide a novel therapeutic strategy for treating DR tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。