AIM: This study aims to develop a nanocarrier system for the oral delivery of β-Carotene (BC) (as a model therapeutic agent) and to test its efficacy in ameliorating inflammation in an ulcerative colitis (UC) patient-derived organoid. MATERIALS & METHODS: BC was encapsulated in a zein protein nano-cage surface-functionalized with pectin and polyethyleneglycol (PEG). The nanoencapsulated BC (nBC) was characterized for physicochemical properties (size, charge, surface chemistry) and functional properties (radical scavenging, mucoadhesion and penetration, release in simulated digestive fluids). Further, we evaluated the performance of nBC in ameliorating inflammation in Caco-2 and UC patient-derived organoid models. RESULTS: nBC achieved 75% encapsulation efficiency with improved stability and functional properties when compared to free BC. The nanocarrier was non-cytotoxic and improved mucoadhesion, mucopenetration, and the anti-inflammatory potential of BC. In UC organoids, nBC suppressed dextran sulfate sodium (DSS)-induced TNF-α and IL-8 production by approximately 70% and 31%, respectively, which was significantly higher than free BC at comparable concentrations. CONCLUSIONS: The protein-polymer nanoencapsulation strategy showed promise in protecting BC and overcoming intestinal mucus barriers for an improved anti-inflammatory effect in the organoid model. Further studies using animal models are warranted for establishing pharmacokinetics, tissue distribution, and therapeutic index of orally delivered nBC.
Nanoencapsulation enhanced the performance of β-carotene for ameliorating inflammation in patient-derived organoids.
纳米封装增强了β-胡萝卜素在改善患者来源类器官炎症方面的性能
阅读:17
作者:Ngew Estee, Kollipara Revathi, Bessissow Talat, Karboune Salwa, George Saji
| 期刊: | Nanomedicine | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr;20(7):663-675 |
| doi: | 10.1080/17435889.2025.2465247 | 研究方向: | 炎症/感染 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
