Integrated Metabolomics and Network Pharmacology to Reveal the Mechanisms of Guizhi-Fuling Treatment for Myocardial Ischemia

整合代谢组学与网络药理学揭示桂枝茯苓治疗心肌缺血的机制

阅读:8
作者:Bailu Duan, Yan Ye, Zhenxiang Zhou, Lintao Han, Fang Huang, Jingjing Li, Qiong Wang, Xiangfa Zeng, Xiaoming Yu

Abstract

Myocardial ischemia is a cardio-physiological condition due to a decrease in blood perfusion to the heart, leading to reduced oxygen supply and abnormal myocardial energy metabolism. Guizhi-Fuling (GZFL) is effective in treating Myocardial ischemia. However, its mechanism of action is unclear and requires further exploration. We attempt to decipher the mechanisms behind GZFL treating Myocardial ischemia by integrating metabolomics and network pharmacology. In this study, myocardial metabolomic analysis was performed using GC/MS to identify the potential mechanism of action of GZFL during myocardial ischemia. Then, network pharmacology was utilized to analyze key pathways and construct a pathway-core target network. Molecular docking was incorporated to validate core targets within network pharmacological signaling pathways. Finally, western blots were utilized to verify core targets of metabolomics, network pharmacology integrated pathways, and key signaling targets. Thus, 22 critical biomarkers of GZFL for treating myocardial ischemia were identified. Most of these metabolites were restored using modulation after GZFL treatment. Based on the network pharmacology, 297 targets of GZFL in treating myocardial ischemia were identified. The further comprehensive analysis focused on three key targets, such as Tyrosine hydroxylase (TH), myeloperoxidase (MPO), and phosphatidylinositol 3-kinases (PIK3CA), and their related metabolites and pathways. Compared with the model group, the protein expression levels of TH, MPO and PIK3CA were reduced in GZFL. Therefore, the mechanism of GZFL for treating myocardial ischemia could inhibit myocardial inflammatory factors, reduce myocardial inflammation, and restore endothelial function while controlling norepinephrine release and uric acid concentration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。