Fuc-S-A New Ultrasonic Degraded Sulfated α-l-Fucooligosaccharide-Alleviates DSS-Inflicted Colitis through Reshaping Gut Microbiota and Modulating Host-Microbe Tryptophan Metabolism.

Fuc-SA 新型超声波降解硫酸化α-l-岩藻糖寡糖通过重塑肠道菌群和调节宿主-微生物色氨酸代谢来缓解DSS引起的结肠炎

阅读:7
作者:Xiao Haitao, Feng Jinxiu, Peng Jiao, Wu Peigen, Chang Yaoyao, Li Xianqian, Wu Jinhui, Huang Haifeng, Deng Huan, Qiu Miao, Yang Yuedong, Du Bin
SCOPE: The dysbiosis of intestinal microecology plays an important pathogenic role in the development of inflammatory bowel disease. METHODS AND RESULTS: A polysaccharide named Fuc-S, with a molecular weight of 156 kDa, was prepared by the ultrasonic degradation of fucoidan. Monosaccharide composition, FTIR, methylation, and NMR spectral analysis indicated that Fuc-S may have a backbone consisting of →3)-α-L-Fucp-(1→, →4)-α-L-Fucp-(1→ and →3, 4)-α-D-Glcp-(1→. Moreover, male C57BL/6 mice were fed three cycles of 1.8% dextran sulfate sodium (DSS) for 5 days and then water for 7 days to induce colitis. The longitudinal microbiome alterations were evaluated using 16S amplicon sequencing. In vivo assays showed that Fuc-S significantly improved clinical manifestations, colon shortening, colon injury, and colonic inflammatory cell infiltration associated with DSS-induced chronic colitis in mice. Further studies revealed that these beneficial effects were associated with the inhibition of Akt, p-38, ERK, and JNK phosphorylation in the colon tissues, regulating the structure and abundance of the gut microbiota, and modulating the host-microbe tryptophan metabolism of the mice with chronic colitis. CONCLUSION: Our data confirmed the presence of glucose in the backbone of fucoidan and provided useful information that Fuc-S can be applied as an effective functional food and pharmaceutical candidate for IBD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。